We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Environment

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is Potential Evapotranspiration?

By Liz Thomas
Updated: Jun 04, 2024
References

Potential evapotranspiration (PET) is the amount of evapotranspiration, or evaporation, that may occur if plenty of water is present in soil, a water source, or plants. The actual amount of evapotraspiration is limited by the water source and is used for water management in agriculture, building, and drainage studies. It is possible to estimate this amount using equations.

Evapotranspiration refers to the evaporation and transpiration that occurs. The potential refers to the total amount of evaporation that could possibly occur if there is plenty of water available. In many cases, water is not available and irrigation becomes necessary. Calculating the potential evapotranspiration ensures that the necessary amount of water is used in irrigation methods.

Estimates of PET can be calculated in three ways. The first equation, the Thornthwaite Equation, was developed in 1948. The Penman Equation was also developed in 1948. The most commonly used equation is the Penman-Monteith Equation developed in 1965, years later than the first two.

Modeling of PET is typically done using the Penman-Monteith equation. This is the standard method used by the Food & Agriculture Organization of the United Nations (FAO). The Soil and Water Assessment Tool (SWAT) and the Association of Civil Engineers (ASCE) use this equation as a standard method, though with one or two alterations.

In order to properly estimate potential evapotranspiration, certain factors are required. Solar radiation, wind speed, daily mean temperature and relative humidity are needed to complete the calculation. These factors can change daily, which means the potential evapotranspiration changes every time a factor shifts.

This calculation is not exact, as the type of crop will alter the necessary water. Each plant contains stomata that acts differently. The stomata are the pores on the leaf surface that release water vapor and oxygen into the atmosphere. Stomata resistance, or the ability of water vapor to pass through the leaf, is an unknown factor of PET estimation.

Much of the current research investigates the affects of plants on potential evapotranspiration. It is possible that different plant factors will need to be added to the Penman-Monteith equation to achieve a more realistic estimate. This variation is why PET is rarely used in agricultural reports. In addition to irrigation estimations, potential evapotranspiration is also used to determine the type of drainage that is needed in fields. When constructing roads, buildings, and structures, PET is commonly used to determine how those structures will affect the environment. Any industry or action that requires water management may use PET.

All Things Nature is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Link to Sources
Discussion Comments
Share
All Things Nature, in your inbox

Our latest articles, guides, and more, delivered daily.

All Things Nature, in your inbox

Our latest articles, guides, and more, delivered daily.