We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Aquatic

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is a Ctenophore?

Michael Anissimov
By
Updated: Jun 04, 2024

A ctenophore is a small marine animal, usually with two long tentacles, that preys on tiny targets in the ocean’s photic (light) zone, including plankton, fish eggs, larvae, other ctenophores, and other tiny organisms generally around 1 mm in size. Ctenophores are sometimes called comb jellies, despite their relative complexity in comparison to jellyfish. Some ctenophores are bioluminescent, but this is only visible in complete darkness. In an aquarium, ctenophores appear bioluminescent due to rows of fused cilia on its side used for locomotion, which scatter light, producing a beautiful rainbow effect. In the best-known species, Pleurobrachia, the light does not emit from the ctenophore itself, but is created by optical scattering.

The best-known genera of ctenophore is Mnemiopsis, which can be found seasonally in the brackish water off Chesapeake Bay. Like jellyfish, Mnemiopsis and other ctenophores have bodies that consist mostly of water, in this case 97%. The ctenophore is prey for many important larger animals, including sea turtles and a variety of fish.

Ctenophores have several unique cells for hunting and locomotion. The ctenophore has a balance receptor, the statocyst, which works very differently than the inner ear in mammals, but is used to maintain upright positioning in ctenophores as needed. Ctenophore tentacles contain colloblasts, or lasso cells, which are specialized cells that send out sticky threads upon contact with prey. These are different from the jellyfish’s nematocysts, which are instead used to inject toxins, but they share some structural similarities. The release times for these cells are very impressive, in the microseconds or less, and can only be captured by extremely quick-exposure cameras.

Unfortunately, we don’t know as much about ctenophore history as we’d like, because these animals fossilize poorly. Most of what we know is gleaned from observations of ctenophores in laboratories in the present. Although more complex than jellyfish, ctenophores lack a central nervous system, possessing only a decentralized neural net to guide their behavior and reactions. The simplicity of this neural net makes it a potential target for emulation in robotics.

All Things Nature is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Michael Anissimov
By Michael Anissimov
Michael Anissimov is a dedicated All Things Nature contributor and brings his expertise in paleontology, physics, biology, astronomy, chemistry, and futurism to his articles. An avid blogger, Michael is deeply passionate about stem cell research, regenerative medicine, and life extension therapies. His professional experience includes work with the Methuselah Foundation, Singularity Institute for Artificial Intelligence, and Lifeboat Foundation, further showcasing his commitment to scientific advancement.
Discussion Comments
Michael Anissimov
Michael Anissimov
Michael Anissimov is a dedicated All Things Nature contributor and brings his expertise in paleontology, physics,...
Learn more
Share
All Things Nature, in your inbox

Our latest articles, guides, and more, delivered daily.

All Things Nature, in your inbox

Our latest articles, guides, and more, delivered daily.